Development of a P 2 element with optimal L 2 convergence for biharmonic equation
نویسندگان
چکیده
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA multiunit ADI scheme for biharmonic equation with accelerated convergence
We consider the problem of acceleration of the Alternative Directions Implicit (ADI) scheme for Dirichlet problem for biharmonic equation. The second Douglas scheme is used as the main vehicle and two full time steps are organised in a single iteration unit in which the explicit operators are arranged differently for the second step. Using an a priori estimate for the spectral radius of the ope...
متن کاملa posteriori $ l^2(l^2)$-error estimates with the new version of streamline diffusion method for the wave equation
in this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. we prove a posteriori $ l^2(l^2)$ and error estimates for this method under minimal regularity hypothesis. test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملEXISTENCE OF MULTIPLE SOLUTIONS FOR A p(x)-BIHARMONIC EQUATION
In this article, we show the existence of at least three solutions to a Navier boundary problem involving the p(x)-biharmonic operator. The technical approach is mainly base on a three critical points theorem by Ricceri.
متن کاملOptimal Solver for Morley Element Discretization of Biharmonic Equation on Shape-regular Grids
This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids. Mathematics subject classification: 65F08, 65N30, 65N99
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2019
ISSN: 0749-159X,1098-2426
DOI: 10.1002/num.22361